Master Thesis - Design of a vector network analyser for millimetre waves in fusion research / Design eines Vektor-Network-Analysers für Millimeterwellen in der Fusionsforschung

Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie IGVP | online seit: 04.12.2019 
Kennziffer: IGVP-2019-5
Am Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie IGVP stehen biologische, chemische, physikalische und verfahrenstechnische Arbeiten an und mit Grenzflächen wie auch Plasmen im Forschungsfokus.

Das IGVP sucht zum nächstmöglichen Zeitpunkt eine/einen Studentin/Studentin für Master Thesis - Design of a vector network analyser for millimetre waves in fusion research / Design eines Vektor-Network-Analysers für Millimeterwellen in der Fusionsforschung
Ihre Aufgaben

  • Millimetre waves in fusion research
    Beams of 40–240 GHz are used for plasma diagostics and heating (both sending and receiving). Millimetre vector network analysers (MVNAs) are necessary for testing components (antennas, transmission lines, mirrors) and for prototyping new diagnostics. Commercial offerings are not a good fit, as they are expensive and contain features that are not necessary for our applications and integration into larger systems is often problematic, e. g. when a movement stage needs to be synchronised with MVNA data acquisition.

    Project description
    The project uses off-the-shelf components to design a MVNA for fusion applications at IGVP. A basic MVNA consists of synthesiser sources with powers less than 100 mW up to 20 GHz, which are coupled to frequency multipliers (TX) and harmonic mixers (RX). The IQ detection at the IF and data acquisition can be realised by software defined radio (SDR).
    Sending and receiving components are controlled via USB. The MVNA program integrates control into a package running an a laptop, with interfaces to e. g movement stages.
    Essential features are the use of open source software, ability to run on Linux (and possibly Windows), portability of data formats, physical portability of the hardware, and documentation. The frontend will be written in python+scipy or similar and should support time resolved single frequency measurements and frequency sweeps. All HF components are already available, it will be necessary to select which particular ones are most useful. Tests and calibration will be conducted on real world scenarios.
Ihre Voraussetzungen

  • fundamental knowledge of HF technology
  • programming in python/matlab
  • doing a master in physics, electrical engineering, computer science

The thesis can be started in January 2020 or later.
Die Arbeit kann in Deutsch oder Englisch abgefasst werden.
Fragen zu dieser Position beantwortet gerne

für den Bewerbungsprozess:
Frau Bianca Zeindlmeier, bianca.zeindlmeier@igvp.uni-stuttgart.de

Bitte bewerben Sie sich ausschließlich über unser Bewerber-Portal.

Keine Details erfasst
counter-image